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Abstract
Short-form video content has proliferated more
rapidly than ever across the entire internet due to
its relative ease of creation, and accessibility and
receptibility to a wide variety of audiences around
the world. Unfortunately, the mass dissemination
of such content has also attracted malicious actors
to use video content as a prominent vector of harm-
ful content, benign forms – i.e. misinformation,
deepfakes – of which are difficult to be reliably de-
tected by current AI-powered moderation systems.
As an intermediate sub-problem in tackling this
widespread societal issue, we explore the feasibility
of whether or not AI models are capable of detect-
ing malicious and suspicious edits in short form
video content, with a starting focus on pinpoint-
ing and timestamping cut transitions. We explore
the use of frontier foundational models, particularly
Google’s Gemini 1.5 Pro that has recently gained
the ability to take in continual video input in addi-
tion to both text and still image, and compare its
capabilities to an existing task-specific neural net-
work TransNet V2. Our findings across a variety of
quantitative and qualitative metrics shed light on the
progress foundational models can create in regards
to mass-scale short-form video moderation across
the web, while also highlighting certain limitations.

1 Introduction and Related Work

The rising popularity of social media has dramati-
cally transformed the way information is shared

throughout the world, making such apps a critical
vector for content propagation, given that they are
so accessible by almost all members of society.
In particular, short-form video platforms like
Instagram and TikTok have become particularly
potent channels for rapidly spreading information,
but also increasingly sophisticated forms of
misinformation [4]. While text-based content
has developed relatively robust detection and
flagging mechanisms [5], video content presents
a more complex challenge, characterized by
nuanced visual and contextual cues that make
comprehensive monitoring significantly more
difficult [6].

Many videos can be deemed harmful for public
consumption based on visual cues that can clearly
be observed at the surface level, for example, those
that involve pornographic and gory content. While
such visually explicit content can be relatively
straightforwardly detected and removed through
surface-level visual filters [7], a more insidious
category of harmful videos has emerged that lever-
ages sophisticated digital manipulation techniques.
These covert forms of misinformation employ
advanced technologies like deepfakes, which can
fabricate entirely fictional scenarios featuring real
people, creating highly convincing false narratives
that can dramatically influence public perception.
Strategic editing techniques, including selective
clip placement, misleading audio overlays, and
contextual manipulation, allow creators to funda-



mentally alter the meaning of visual content in
ways that are challenging to immediately detect [3].

Recent advancements in artificial intelligence,
particularly in multimodal large language models,
offer promising avenues for addressing these
challenges. Notably, Google’s Gemini 1.5 Pro is
one of the only ones that demonstrates remarkable
capabilities in processing and understanding
video-based content [2]. While addressing the
overarching challenge of universal malicious
edit detection in videos is not currently feasible
to conduct in one work, we focus on a critical
yet sanity-level computational task at the heart
of this challenge: clip boundary detection. This
work sits at the intersection of computer vision,
natural language processing, and digital forensics,
promising to provide crucial tools for maintaining
information integrity in an increasingly complex
digital ecosystem.

2 Methodology

2.1 Dataset

To accessibly construct a diverse dataset that
would be well-representative of the short-form
video content prevalent on today’s social media
platforms, we sourced videos posted by other
users from the popular short-form video editing
and design website CapCut [1]. Specifically,
for evaluative purposes, we sourced N = 98
videos with a varying number of clips and total du-
ration, all with a frame rate of 30 frames per second.

A script was developed which could scrape
and download template videos from CapCut’s
template home page. However, the ground truth
shot boundaries could only be obtained manually,
accounting for the relatively small size of the
dataset.

Further details regarding the distribution of
our dataset, in terms of both duration and number

of clips, are depicted in 4a and 4b, with example
images from our dataset depicted in 4c. While the
number of clips in each video is rather uniform
(save for an outlier of 3 clips with 30 videos)
with 10 videos for each clip count from 1 to 8,
the duration of the videos heavily skews right,
with most durations being in the range of 5 to 20
seconds.

(a) Distribution of video duration length

(b) Distribution of video clip count

(c) Example clips of videos from the CapCut dataset

Figure 1
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2.2 Pre-Evaluation Fine-Tuning
Once we had our dataset, we split our 98 videos
into two groups: fine-tuning and evaluation.
Our fine-tuning dataset consisted of 20 videos,
chosen at random from our larger dataset, and
our evaluation dataset consisted of the remaining
78 videos. The videos in the fine-tuning dataset,
once downloaded, were pre-processed into tensor
form and grouped with information about the num-
ber of clips in the video as well as the clip durations.

These clips were used to fine-tine a tradi-
tional video-understanding neural network known
as TransNet V2 [9], about which more information
can be in the inference section of the paper. An
important consideration we had in regards to
TransNet V2 was the data it was trained on. In
particular, TransNet V2 was trained on clip times
in medium to longer-form videos on the order
of several minutes long, thus raising a possible
concern of the inability to deal with shorter form
video in which clips occur at a higher frequency
and whose occurrence may merely be perceived as
noise.

To alleviate this concern, we conducted a
fine-tuning approach. We first froze all weights
of the original TransNetV2 model except those in
the final 2, and then proceeded to train the model
further using the fine-tuning dataset using ADAM
as the optimizer. As the model was initially built to
target medium to long-form data and we wanted
to tune it for short-form data, we fine-tuned the
model for 10 epochs to ensure it was able to learn
to handle shorter, faster changes.

2.3 Inference
Each of the N = 78 evaluation videos were then
sent as API queries to Gemini Flash 1.5 with the
following prompt:

Analyze this video and determine the starting
and ending timestamps for each clip in the
video. For each clip provide a brief

description of the content in the clip.
Provide the output in JSON format with
the timestamps listed in the
Minutes:Second.millisecond format.
The output should be in this format, a
list of clips
[
{ "clip": ...,
"start": minutes:seconds.milliseconds,
"end": minutes:seconds.milliseconds },
...
]

A sample response from the API request is as
follows:

[{’clip’: ’The video starts with a shot
of a sunset in the distance from a car
driving down the highway. Text over
the video reads "why do you always post
abt Jesus??" Then text reading "I
won\’t be quiet!! my God is alive!!
So how could I keep it inside?" The
video then cuts to a shot of a clear
blue sky with clouds moving in the
distance.’,
’start’: ’0:00.000’,
’end’: ’0:07.000’},
{’clip’: ’Text reading "PRAISE
the Lord! oh my soul!!"’,
’start’: ’0:07.000’,
’end’: ’0:13.000’}]

2.3.1 TransNet V2

To better understand the relative capabilities of
Gemini 1.5 Flash in inverse video edit detection,
inference was also run using the state-of-the-art
TransNet V2 neural network created for shot bound-
ary detection [9]. The TransNet V2 architecture
incorporates a sub-structure called a dilated deep
convolutional neural network (DDCNN) that is
made up of multiple 3 x 1 x 1 convolutional layers
followed by another layer of the same dimension,
in parallel (four streams), with all outputs then
being concatenated and batch-normalized.

After the images are pre-processed in the
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Figure 2: TransNet V2 (left), Dilated Deep Con-
volutional Neural Network Cell Substructure (up-
per right), Learnable Similarity Mechanism (lower
right) [9]

DDCNN substructures, the outputs are then fed
into learnable similarity blocks in which matrix
multiplications aim to capture temporal similarity
relationships between nearby images in the
continual video sequence, with the main motivation
being that close image pairs of lower similarity
metrics correspond to a cut transition. The resultant
outputs of the network are positive and negative
labels for each frame in the video as to whether
or not they are part of a start-end frame pairing
representing a cut transition.

3 Evaluation

As a sanity check, we first evaluated the models
using the following metrics

1. Duration deviation: Average percentage devia-
tion in predicted total clip duration in a video

Figure 3: Visualization of the dynamic time warp-
ing (DTW) algorithm, with dashed lines represent-
ing DTW alignment between pairs of timestamps

2. Clip segmentation accuracy: Number of
videos with number of clips predicted correctly
divided by total number of videos

One primary concern we had with the basic
metric of frame classification accuracy used
in [9], as in whether or not each frame was
correctly classified as being associated with a
cut transition, was its brittleness in regards to
edge cases or situations where the classification
might be technically correct but fails to capture
the broader context or intent of the transition. For
instance, a model might correctly identify isolated
cut transitions while missing the overall temporal
structure or misclassifying transitions in complex
sequences, leading to misleadingly high accuracy
metrics that do not reflect real-world performance.

Thus, we use a sophisticated metric to evalu-
ate the similarity ground truth vs predicted clip
boundaries by treating these as temporal sequences,
and then applying the dynamic time warping
(DTW) algorithm [8]. DTW is an algorithm that
aligns two sequences by warping their time axes
non-linearly to find an optimal match between
them. Unlike simple distance measures like
Euclidean distance, DTW can handle sequences
that are similar but out of phase in the time
dimension. DTW aligns both temporal sequences
in a way that minimizes the total distance between
them, and then reports this distance as the DTW
loss. An example visualization of this algorithm is
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shown in 3.

Table 1: Comparison of Gemini and TransNet
Across Metrics

Metric Gemini TransNet

Clip Segmentation Accuracy 48.0% 39.8%
Duration Deviation 7.56% 10.61%
Mean DTW Loss 14.5 30.2

We deduce that Gemini Flash 1.5 outperforms
TransNet V2 in terms of shot boundary detection
accuracy, as evidenced by the higher clip segmenta-
tion accuracy, lower duration deviation and lower
mean DTW loss (average DTW loss over all videos
in the dataset).

Examining the predicted total video durations, we
noticed that both models seemed to perform quite
well, getting very close to the correct duration
but with small quantities of deviation. The total
duration estimates were calculated by summing up
all the estimated clip durations produced by both
models, with any deviation from the true values
being caused by the model detecting "overlapping"
clips, or the same portion of one clip as being
part of two different clips. This hiccup seemed
to occur more for TransNet than Gemini, and the
average deviation was lower for Gemini due to this.
Notably though, when Gemini did hiccup, it could
be quite seriously. As visible in 4a, Gemini has 2
significant outliers that are visibly quite far away
from the equilibrium line, in which it predicted
a 12-second video to be around 1-second long
and a 20-second video to be around 45-seconds
long. TransNet only produced one such outlier. As
Gemini analyzes the video as a whole as a opposed
to TransNet’s systematic frame-by-frame method,
it may be more prone to making large errors of this
kind, with a small issue within the video causing
cascading effects on its predictions.

The predicted clip counts seemed to follow

(a) Predicted video durations generated by Gemini and
TransNet V2, compared to ground truth line of y = x

(b) Predicted clip counts generated by Gemini and
TransNet V2, compared to ground truth line (black)

(c) Average DTW loss with respect to video length

(d) DTW loss with respect to video clip count

Figure 4
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similar patterns to the predicted video durations.
Gemini performed better than TransNet overall,
both by pure accuracy and average deviations.
However, most of TransNet’s deviations were
small, as it was found to often predict either
1 additional clip, or 1 fewer clip than ground
truth. We ascribe this to TransNet picking up
video artifacts (potentially introduced by editing
bugs), which Gemini is able to avoid due to it’s
understanding of the visual content in the video.
However, when Gemini did make an error, it
tended to be a significant one. Gemini had around
4 significant outliers where its predicted clip
count was incredibly far from the true value, with
especially notable cases where it predicted 17 and
22 clips for videos that had 2 clips in reality. These
clips may have been especially noisy, containing
subjects that moved around in a hard to follow
manner, prompting Gemini to categorize their
behavior within the clips as a transition or clip
change. Further qualitative analysis reveals Gemini
performing worse on videos with “subtler” and
more rapidly successive transitions as well, as can
be seen in 5.

As expected, DTW loss increases with video
duration but remains relatively constant as a
function of the number of clips. Gemini’s perfor-
mance degrades much faster for videos exceeding
25s, compared to the decrease in TransNet’s
performance. This demonstrates Gemini’s limited
ability to effectively process and retain information
for longer sequences, suggesting that despite its
supposedly expanded long-context window, there
are still challenges dealing with long-form video.

4 Analysis

In general, we conclude that

1. Frontier multimodal foundation models such
as Gemini 1.5 are capable of identifying shot
detection boundaries with accuracy on par
with and even exceeding that of state-of-the-
art deep convolutional neural network archi-

Figure 5: Similar ’before’ (top) and ’after’ (bottom)
video frames between a cut transition, missed by
Gemini 1.5

6



tectures (TransNet V2), especially for shorter-
form video content. That being said...

2. Gemini 1.5 exhibits significantly worse dete-
rioration in performance for longer duration
videos compared with TransNet V2, which is a
key limitation of current foundational models.

3. We successfully achieved our goal of answer-
ing whether frontier foundation models are
capable of video reverse-engineering, with our
answer being: Yes, these models are able to
identify shot transitions accurately, but only
for short-form videos of duration <25s.

We acknowledge that there are some limitations
with our current study, such as the limited size of
our dataset, due to time limitations and the lack
of an automated scraping mechanism to scrape
ground truth labels from CapCut. A script to scrape
video links from CapCut was developed, and
further work could involve developing methods
to scrape shot transition effects and timestamps
directly from the CapCut editor interface.

The metrics used in our evaluation are rather
rudimentary as well; more sophisticated metrics
such as MeanIoU can yield more in-depth insights
by taking into account both false positives and false
negatives. This would involve simply adapting the
metric (which was intended for evaluating image
segmentations) to the temporal domain.

We also chose these more rudimentary met-
rics largely because of the limited size of our
dataset; curating a larger dataset would allow us
to segment the dataset further and perform a more
extensive analysis in terms of the following: type
of video transition, distribution of cuts, content of
video, etc.

Further areas of improvement include devel-
oping ensemble models, where videos can be first
passed through an established shot-detection model
(such as TransNet V2); and then passed through
our foundation model (with the TransNet outputs

concatenated). This might yield an even higher
accuracy and bring us closer to the goal of full
video reverse engineering, and serves as a stepping
stone to the ultimate goal of unsupervised video
editing models.
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