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Abstract

Today, many technologies such as autonomous vehicles, aerial
mapping, and AR/VR rely on Simultaneous Localization and
Mapping (SLAM) to track device location and create 3D maps
of their surroundings using video input. However, SLAM can
catastrophically fail in the monocular camera setting when
the camera undergoes near-perfect rotational motion. Specif-
ically, this type of camera motion prevents SLAM’s bundle
adjustment algorithm from propagating non-zero gradient in-
formation to scene depth, resulting in inconsistent scaling of
different parts of the 3D reconstruction. In this project, we
introduce RotoSLAM, which address rotational scale drift by
supplying SLAM with additional supervisory signals from a
diffusion-based depth estimator to help recover more accurate
scene geometry when camera rotational motion is detected.
Our diffusion-based depth estimator is conditioned on multi-
ple previous frames’ RGB images, thus leveraging the sequen-
tial nature of video frames. To finetune our diffusion depth
estimator, we procedurally generate 3D ground truth train-
ing data via Infinigen. Through this depth supervision, our
method reduces the amount of rotational scale drift observed
in both real and synthetic SLAM video sequences.

1 Introduction

SLAM is an important problem in robotics and 3D vision,
where the goal is to extract camera trajectory motion as well
as a 3D map of the environment from just an input RGB
video. Given how easy it is to place cameras on devices such
as cars, phones, and other robots, SLAM algorithms serve as
a cheap and popular way to obtain 3D information in settings
such as robotics, autonomous vehicles, and AR/VR.

However, in the monocular SLAM setting, all state of the
art (SOTA) SLAM methods catastrophically fail during
camera rotational motion. This occurs because there is very
little parallax between neighboring frames during rotation,
causing near-zero gradient flow to the depth of the scene
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Fig. 1. An example of rotation scale drift from SLAM method
DPVO [15]. The ground truth trajectory and predicted trajec-
tory are aligned on their first 20 frames to showcase the effects
of rotational scale drift over time. Our method RotoSLAM
reduces the effect of rotational scale drift.

during SLAM’s bundle adjustment algorithm. This results in
different portions of the reconstructed scene to have different
scales, thus incurring large trajectory inaccuracies. See Fig. |
for an example. This is an important issue, especially in cases
where we need to apply SLAM in environments that make it
difficult to safely deploy multiple cameras, such as narrow
caves or dense forests.

RotoSLAM addresses this issue by getting additional
supervisory signal from external depth predictors during
rotational motion, thus avoiding the zero-gradient flow issue



inherent to bundle adjustment. This is done in two main steps.
First, we detect when rotational motion occurs by utilizing
heuristics based on the reprojection locations between
neighboring frames. When rotational motion is detected, we
invoke our finetuned diffusion-based depth predictor module.
Unlike traditional monocular depth predictors which only
take in a single RGB image, our predictor is conditioned on
multiple previous frames’ RGB images. This takes advantage
of the fact that consecutive frames in a video have similar
structures that can help improve depth prediction accuracy.
We utilize the predicted depth as additional supervisory signal
during bundle adjustment, thereby reducing the amount of
scale drift that occurs during rotational motion.

Training such a diffusion model requires a large amount of
ground truth depth and camera pose data, which is hard to
accurately obtain from real life video datasets. As a result, we
choose to utilize procedurally generated scenes from Infinigen
[11] to serve as our ground truth data. Because these scenes
are procedurally generated, we can directly compute perfectly
accurate depth maps and camera locations. By training on
Infinigen data, our diffusion model is able to outperform other
depth prediction models in the SLAM context, and ultimately
achieve more accurate camera trajectories.
In summary, our contributions are as follows:

* We build a rotation detection module based on reprojec-
tion heuristics between consecutive frames

* We utilize Infinigen to produce large amounts of ground
truth 3D data to train a diffusion model to predict depth
from consecutive RGB frames

* We utilize our diffusion model’s depth predictions as ad-
ditional supervisory pressure during bundle adjustment
to obtain more accurate scene depth during rotational
motion, and ultimately more accurate camera trajectory
reconstruction

2 Related Works

SOTA SLAM methods such as DPVO [15], DROID-
SLAM [14], and ORB-SLAMVv3 [2] achieve good accuracy
on SLAM benchmarks when utilizing stereo video input.
However, when limited to only monocular video, all three
methods suffer from rotational scale drift despite the
differences in their algorithmic design. Key to all three
algorithms is bundle adjustment, which attempts to minimize
the reprojection error for each pair of corresponding points
on neighboring images. Fundamentally, there is a natural
ambiguity of scene depth in the case of perfect rotational
camera motion, making it theoretically impossible to deduce
a correct scene depth in such cases. The gradient flow to the
depth of each pixel becomes 0, thus allowing scenes to be
arbitrarily rescaled during rotation motion. See Fig. 2 for an

Fig. 2. An example of depth ambiguity in the presence of cam-
era rotational motion. In this example, let I} and I3 denote the
ground truth camera locations for two neighboring views, and
let the two green Xs denote a pair of corresponding points
between the images. When minimizing reprojection error,
typically computed as the L2 distance between the projection
of the 3D point responsible for the correspondence pair and
the actual projection locations on each images, note that any
point along the dashed line will result in O reprojection loss.
As a result, the depth of the point is ambiguous, and the gra-
dient flow to the scene depth during bundle adjustment will
be zero.

illustration of this principle. As a result, scenes are scale con-
sistent during straight line motion, but can suddenly rescale
during rotation motion, thereby leading rotational scale drift.
RotoSLAM is designed to mitigate this issue by obtain-
ing non-zero depth supervision from other sources when
vanilla bundle adjustment runs into this theoretical bottleneck.

Existing SLAM benchmarks such as KITTI [9] and Waymo
Open Dataset [13] utilize sensor fusion from stereo cameras,
GPS, IMU, LiDAR, radar, and more to create ground truth
camera trajectories for videos recorded. However, modalities
like GPS and IMU can be error prone, especially when inte-
grated over long periods of time. In addition, other modalities
such as LiDAR and radar return sparse and noisy signal in
the presence of special surfaces such as metallic and highly
reflective objects. As a result, the generated camera trajecto-
ries and depth maps from these datasets are sparse and noisy.
In contrast, Infinigen provides ground truth 3D geometry in-
formation without fail, as the entire scene is procedurally
generated via raytracing. Furthermore, most existing SLAM
datasets are obtained from driving and drone flying datasets.
In contrast, Infinigen’s scene diversity is much greater, with
the ability to render both indoor and outdoor scenes.
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Fig. 3. An illustration of the reprojection difference heuris-
tic used to determin the presence of rotational motion. By
computing the reprojection of points on one image onto the
other with and without the relative translation between them,
we can get a sense of the reprojection’s “sensitivity” to trans-
lation between the camera poses. If this sensitivity is low,
this suggests that the relative motion between the cameras is
rotaional in nature.

3 Methodology

3.1 Rotation Detection

To detect when rotational motion is occurring within SLAM,
we utilize a heuristic based on reprojections of corresponding
points on consecutive image frames. Consider two consecu-
tive images /1 and I in the input video. After several iterations
of bundle adjustment have passed, SLAM will produce an
estimate of the relative translation and rotation between the
camera poses, as well as the depths of the points for some
pixels on image /;. Utilizing this information, we can first
reproject the points on /; out into 3D space, and project these
points back onto I, and record these reprojection locations.
We can also repeat this process again, but this time ignor-
ing the relative translation between the poses of I} and .
If the new reprojection locations on I, are close in position
compared to the old reprojection locations, this means that
the reprojection location is insensitive to the translational
motion between I} and I, suggesting the presence of rota-
tional motion. See Fig. 3 for an illustration of this reprojection
heuristic. By thresholding on this reprojection difference, we
are able to successfully detect rotational motion segments
during trajectories, as shown in Fig. 4.

3.2 Fitting Monocular Depth Predictions to Ex-
isting Data

When training models for depth prediction, a common chal-
lenge is the mismatch in the color representation of depth

Fig. 4. An example of our rotation detection heuristic on a
sample SLAM trajectory prediction. By changing the heuris-
tic’s thresholding, it is possible to tune the sensitivity of the
rotation detection module.

maps between predicted outputs and ground truth data, as
seen by Fig. 5. This may arise as the ground truth comes in
different forms, such as absolute depth (from stereo cameras
with known calibrations), disparity maps (from stereo cam-
eras with unknown calibration), or depth up to an unknown
scale (from structure from motion) [8]. Though these depth
maps are conceptually equivalent, their numerical scales or
baseline shifts may differ, leading to inaccuracies when using
standard loss functions like L2 norm.

Problem Description In a typical training setup, the model
outputs a predicted depth map, and the loss is calculated based
on the difference between this prediction and the ground truth
depth map. The loss function used is generally the L2 norm:

n

Y (pred; — GT;)?
i=1

L=|GT —pred|, =

However, this approach assumes that the predicted depth val-
ues (pred) and the ground truth (GT) are directly comparable.
In reality, the predicted values may need to be adjusted by a
scale and a shift to effectively match the ground truth values
so the model does not overfit to particular numerical ranges
or specific characteristics of the training data.

By adjusting for scale and shift to map between the ground
truth images and output provided by our model, we ensure that
the model learns to capture the underlying depth structures
rather than memorizing noise-specific artifacts or distribu-
tional idiosyncrasies present in the training set. This approach



Fig. 5. Illustration of depth map generation and the chal-
lenges associated with color representation mismatches. Top:
Original input image depicting a natural landscape with trees.
Middle: Ground truth depth map generated by Infinigen. Bot-
tom: Depth map generated by the Marigold model.

promotes better generalization to unseen data, which is crucial
for deploying the model in diverse real-world scenarios.

Proposed Solution To address this scale and shift discrep-
ancy, we propose the following two-step solution:

1. Depth Prediction: The model predicts the depth map.

2. Scale and Shift Adjustment: Post-prediction, we ap-
ply a linear transformation to the predicted depth values
to align them with the ground truth. The transforma-
tion is defined by two parameters, o and B, representing
the scale and shift, respectively. These parameters are
computed by solving the following equation:

min ||o- pred + B — GT||
(X7B
where o and  are determined by optimizing the min-

imization problem above for each data batch without
backpropagation of gradients. This is to ensure they are

fixed values optimized to best fit the current predictions
to the ground truth. Squared L2 norm was used as the
square operation provides a smooth and continuous func-
tion that is easier to differentiate.

r&nng(oc -pred; + B — GT;)?

This optimization problem is transformed into a linear
system to find the optimal values of o and J.

To solve this, we define the objective function:
S= Z(oc -pred; + B — GT;)?

Afterward, we take the partial derivatives of S with respect to
o and f3, set them to zero, and solve for o and P.

* Derivative with respect to oi:
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These equations can be arranged into a matrix form, leading
to the linear system:

Ypred? Ypred,| [a]  [X(pred;-GT))
Y pred; n Bl Y GT;

This linear system can be solved using standard tech-
niques in linear algebra, specifically through the use of the
np.linalg.solve function available in NumPy’s library.

3.3 Data Acquisition Methodology

In order to train a model of this nature, we needed large-scale
accurate ground truth data. In particular, we required ground
truth data that was accurate on a pixelwise basis, as any lesser
degree of specificity would further risk of producing the scale
inconsistency issues our model was built to address.

Now this condition produces a challenge very early into
the data acquisition process. It is simply impossible to



get pixelwise ground truth values for real videos. There
certainly are many high quality video datasets available
with LiDAR-produced depth maps, but these do not have
a guarantee of pixelwise accuracy. LiDAR works well for
individual, closer-range objects, but when the task broadens
to mapping a full scene, the depth maps are simply estimates
extrapolated from a smaller set of certifiably accurate depth
measurements. True pixelwise accuracy can only be achieved
from synthetic data. Thus, we turned our data acquisition
efforts to a large-scale procedural 3D image generator out of
Princeton’s Vision & Learning Lab: Infinigen.

Infinigen We chose Infinigen because it guaranteed three
different traits that were absolutely necessary for our data.

1. Variance: Infinigen generates all scenes procedurally,
meaning that each scene is generated and composed from
scratch, offering an infinitely large set of potential im-
ages. As Infinigen can generate a diverse array of entities,
weather patterns, and locations, the effective randomness
of the generation process produces the variance we need
to ensure adequate training range.

2. Photorealism: Various studies, like the one described
in "How Transferable are Video Representations Based
on Synthetic Data?" [7] have confirmed the applicability
and often increased accuracy of synthetic data-based
models to real-world applications. Still, cautionary steps
must be taken to ensure accuracy, with the best way to
ensure that a synthetically-trained vision model works on
real-world data being the utilization of synthetic data that
mimics real data as closely as possible. The photorealism
of the video frames produced by Infinigen allows for this.

3. Accurate Ground Truth: Our need for accurate ground
truth values brings us to our primary reason for choosing
Infinigen: it offers a pixelwise ground truth depth map
for every frame of each generated video scene. In fact
it goes even further, as by utilizing real geometry for
scene models as opposed to the more common method of
noise-induced artificial complexity generation, Infinigen
is able to guarantee each depth value is to be completely
accurate.

After finding a procedural generation tool that could create
viable training data with the unique addition of perfect ground
truth depth per pixel, we moved onto the process of scene gen-
eration itself. As Infinigen allows customizability of camera
movement within scenes, we were able to generate various
video scenes, each of approximately 200 frames. In each
scene, we utilized a monocular camera rig undergoing simul-
taneous inward radial motion and rotational motion around
a fixed central region. The specific parametric motion path
differed on a scene-to-scene basis while still following the

Fig. 6. Comparison of input images and their corresponding
depth maps generated by Marigold. Top: Original images of a
flower garden, a Ferris wheel, and a mountain house. Bottom:
Output depth maps showcasing the model’s ability to visually
encode depth information based on color gradients.

patterns of rotational motion and scale variation that tend to
produce scale inconsistencies in traditional SLAM.

3.4 Depth Prediction Methodology

Marigold To predict depth maps, we fine-tune Marigold,
a diffusion model designed for image generation to predict
monocular depth maps. The model, detailed in "Repurposing
Diffusion-Based Image Generators for Monocular Depth
Estimation" [6], transforms the approach to depth estimation
by leveraging generative capabilities.

Marigold operates on a single input image to generate depth
maps, as demonstrated in Fig. 6. To enhance the model’s accu-
racy and adapt it to dynamic scenes typical in video footage,
we extended the input mechanism to integrate contextual in-
formation from multiple frames. Our method leverages the
temporal continuity inherent in videos, a departure from tra-
ditional single-image depth estimation approaches.

Data Split and Performance Metrics For the evaluation
of our model’s performance, we utilized a dataset of videos
generated by Infinigen, each accompanied by corresponding
depth maps. This dataset comprises 30 labelled videos with
corresponding depth maps, each consisting of 192 frames
(5760 frames total), providing a robust basis for testing the
enhancements made to Marigold. An example of the first 8
frames of one of the videos can be seen in Fig. 7. In organizing
our dataset for a comprehensive evaluation, we divided the
videos into three subsets: 19 videos were allocated for training



Fig. 7. Visualization of the first eight frames from a video
generated by Infinigen, alongside their corresponding depth
maps. The top two rows display the original video frames
depicting a natural landscape scene with detailed foliage and
rocky terrain. The bottom two rows show the depth maps for
each frame, colored from red (indicating greater distance) to
blue (indicating closer proximity).

(= 64%), 5 for validation (= 16%), and 6 for testing (20%).
To maintain the integrity of the video sequences due to the
dependency on temporal information from previous frames,
we randomized the allocation of whole videos across the
training, validation, and test sets for each training iteration.
However, the frames within each video were not randomized
individually to preserve the sequential context, crucial for
accurate depth estimation by our model.

To evaluate and quantify the improvements our methodol-
ogy provides, we established a baseline performance measure
where each frame is input independently into the Marigold
model without utilizing the enhancements of incorporating
historical frame data. The performance of the model—both
the baseline and the enhanced version—is assessed using
the Root Mean Squared Error (RMSE) between the depth
maps predicted by the model and the ground truth depth
maps provided with the dataset. To evaluate and quantify
the improvements our methodology provides, we established
a baseline performance measure where each frame is input
independently into the Marigold model without utilizing the
enhancements of incorporating historical frame data. The
performance of the model—both the baseline and the en-
hanced version—is assessed using the Root Mean Squared
Error (RMSE) between the depth maps predicted by the model
and the ground truth depth maps provided with the dataset:

1 n
RMSE = \/n Y (pred;, — GT;)?
i=1

where pred; represents the depth value predicted by the model
for the i-th pixel, GT; is the actual depth value for the i-th
pixel, and 7 is the total number of pixels in the depth map.

Despite utilizing scale and shift factors to align the predicted
depth maps more closely with the ground truth, the color
variance across different videos might still be present. Conse-
quently, alower RMSE in one video compared to another does
not necessarily indicate superior model performance on that
specific video. Regardless, we use RMSE as a comparative
metric within individual videos to discern the improvements
our feature-enhanced model offers over the baseline. This
internal comparison helps isolate the effect of our enhance-
ments, ensuring any observed improvements in RMSE are
attributable to our methodology rather than external factors.

Initial Approach Our initial approach was to extract
features and compute optical flow from the preceding
N € {5,8,10} frames relative to the current frame. This
integration of historical data allows the model to account for
motion and changes in the scene, enriching the context for
depth prediction. The optical flow is calculated using the
Farneback method [1], which provides a dense flow field
capturing the motion between two consecutive grayscale
frames. On the other hand, the feature extraction step is
conducted using the DINO-ViT-S/8 model [10], a pre-trained
vision transformer by Meta known for its ability to capture
high-level contextual information from images. In theory, the
extracted features would provide a semantically enhanced
basis for adjusting the input images, ensuring the depth
prediction model not only captures the geometric but also the
dynamic semantic nuances of the scene. An example of the
features extracted from one frame can be seen in Fig. 8.

Considering the differences in output characteristics between
the feature extractions, optical flow data, and the original in-
put images, we developed a method to adjust the input images
based on these extracted data. These adjustments involve
modifying the brightness and contrast of the input image. The
rationale is to harmonize the input with transient scene ele-
ments, thereby enhancing the model’s accuracy in perceiving
depth. Specifically, the brightness is adjusted based on the
mean and standard deviation of the extracted features, while
the contrast is adjusted according to the normalized magni-
tude of the optical flow.

Brightness Factor(B) = 1 +kg (?)
F

F
Contrast Factor(y) = 1 4 ky (norm( ))

max(F)

Here, ur represents the mean of the extracted features, 6r
their standard deviation, and F denotes the optical flow ma-
trix. The hyperparameters kg and ky are scaling factors that
modulate the influence of features and flow on the image
adjustments, respectively. To optimize these, we employed
a training strategy using a subset of our dataset specifically
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Fig. 8. Comprehensive analysis of feature extraction and optical flow visualization for a mountainous snowy landscape. (1)
Feature Extraction: The leftmost image depicts the input scene used for feature extraction. The top right image displays
a heatmap of summed feature activations across different channels, illustrating the intensity and distribution of activations
throughout the scene. The middle right scatter plot represents the PCA-reduced features, highlighting the primary components of
data variance which simplifies understanding the multidimensional data. (2) Optical Flow: The bottom right image visualizes the
optical flow between consecutive frames, encoded as vector fields, where the color intensity and direction represent the motion

dynamics within the scene.

held out for validation purposes. This training involved a sys-
tematic grid search over a range of potential values for kg and
ky that would reduce the overall RMSE between the predicted
depth maps and the ground truth across the dataset.

Upon deploying the model in broader testing scenarios with
videos not used in the initial grid search, the optimized val-
ues of kg = 0.025 and ky = 0.010 were overfitting to the grid
search videos, as the loss was larger for multiple test videos
compared to baseline loss (see Table 1). This lack of gener-
alization was attributed to the hyperparameters being finely
tuned to the specific characteristics—such as lighting condi-
tions and motion dynamics—of the training set.

Dynamic Frame Weight Approach We decide to use a
dynamic frame weighting approach, which assigns different
weights to each frame and combines them with the input. This
aims to capitalize on the varying significance of each frame in
contributing to depth perception. Importantly, this approach is
inherently designed to enhance generalization across different
videos. By focusing on the contextual relevance of each frame
within a given video, rather than relying on fixed parameters
or features extracted across disparate videos, the model adapts
dynamically to the specific characteristics of each video se-
quence. This context-sensitive weighting mechanism ensures
that our model can more effectively handle the diverse scenar-
ios encountered in new videos, making it robust to variations
in motion dynamics, scene composition, and camera handling
that typically challenge fixed-parameter models.



| Loss value (RMSE)

Video #

| Baseline | N=3 | N=8 | N=10
aseline

| | FT |+ OF| FT |+ OF| FT |+ OF
3 0.564  0.561 0.560 0.563 0.559 0.546 0.445
9 0.386  0.389 0.386 0.401 0.387 0.413 0.406
14 0.798  0.783 0.769 0.801 0.812 0.803 0.802
17 0.437  0.428 0.425 0.435 0.434 0.439 0.438
25 0.481  0.482 0.479 0.491 0.487 0.501 0.492
28 0.613  0.623 0.612 0.623 0.621 0.632 0.626

Table 1. Summary of RMSE values for different video sam-
ples under baseline conditions and with enhanced feature
extraction configurations. The table records the RMSE when
the model runs with only feature extraction (FE) and with
both feature extraction and optical flow (+ OF) for N =5, 8,
and 10 previous frames.

* Process: We process each frame using our depth pre-
diction pipeline and calculate a weighted average of
the depth maps based on optimized weights. These
weights are adjusted iteratively during training to mini-
mize the RMSE between the weighted depth prediction
and ground truth.

* Optimization: The frame weights are optimized through
a gradient descent method using the Adam optimizer,
renowned for its efficiency in handling sparse gradients
and adaptively tuning the learning rates for different
weights. The optimization objective is to minimize the
mean squared error between the weighted average of the
predicted depth maps and the ground truth depth maps.
This process is repeated for each video in the training set,
ensuring that the final weights are robustly tuned across
a diverse array of conditions.

When finding the optimized weights, we evaluate the
performance of the dynamic frame weighting approach
using different numbers of previous frames. Specifically,
we conducted tests with 5, 8, and 10 previous frames to
assess how the temporal depth influenced the accuracy and
robustness of our depth estimation model.

Through these tests, with results recorded in Fig. 9, we dis-
covered that utilizing 5 previous frames consistently yielded
the best performance (lowest average RMSE). This provided
a balance between capturing sufficient temporal information
and avoiding the diminishing returns or potential overfitting
associated with longer frame sequences. Note that while the
RMSE experience fluctuations when transitioning between
different videos, indicating sensitivity to scene-specific
characteristics, the average RMSE across all test videos
remained comparatively stable.

N=5N=8N=10
Average RMSE 0.384 0.410 0.465

e .np

Fig. 9. Data obtained when optimizing weights for the dif-
fusion models. Top: Summary of average RMSE values
when optimizing weights for N € {5,8,10} frames. Bot-
tom: Graphs demonstrating RMSE values across the training
dataset for different frame counts (top is N = 5, middle is
N = 8, bottom is N = 10). Significant fluctuations in RMSE
values correspond to transitions between different video se-
quences within the training set.



Video #‘ Loss value (RMSE)

| Baseline | Trained Weight| Exponential | Average
1 0.427 0.403 0.404 0.423
6 0.354 0.347 0.351 0.351
12 0.623 0.520 0.527 0.636
18 0.357 0.356 0.354 0.356
21 0.462 0.458 0.469 0.470
24 0.354 0.311 0.315 0.354

Table 2. Comparative RMSE results for depth estimation
across test video sequences using baseline and modified mod-
els. This table highlights the performance improvement with
the Dynamic Frame Weights over the standard Baseline and
Average weight models.

When evaluating the performance of this model (Trained
Weight) and further validate the efficacy of the dynamic frame
weighting approach, we conducted a comparative analysis
against several baseline models during our testing phase.

 Baseline: The baseline model (out-of-the-box Marigold)
where each frame is processed independently without
temporal integration.

* Exponential: A model where the weights for the frames
exponentially decay with a factor of 0.8, assigning more
significance to more recent frames.

* Average: A model that simply averages the weights
across all considered previous frames.

As seen in Table 2, the dynamic frame weighting approach
consistently outperformed the baseline model by at least
0.28%. This highlights the effectiveness of incorporating tem-
poral dynamics into depth estimation. Moreover, it generally
performed better than both the model with exponential decay
and the average weighting model, emphasizing its superior
ability to leverage relevant information from multiple frames.
Furthermore, in the evaluation of depth maps on Infinigen
data depicted in Fig. 10, our model successfully captured
finer details, such as the stratification of mountains in the left
image and the delineation of leaves in the right image.

Regarding the assessment of real-world scenarios, our model
was qualitatively evaluated using a selection of images from
both the DDAD dataset [5] and the KITTI dataset [3]. The
model effectively captured essential structural details and
maintained a high level of depth accuracy across various
environmental conditions. Notably, in urban settings, the
depth estimation preserved the geometric integrity of the
scene, such as the accurate rendering of building outlines and
road structures. For instance, as depicted in Fig. 11, our depth
map more distinctly clarifies the building depths on the right
side of the left photo. Additionally, in the right photo, our

Fig. 10. Comparative visualization of depth map generation
for a scene from generated footage with Infinigen. Top: Orig-
inal image captured in an urban environment. Middle: Depth
map generated by our model. Bottom: Depth map produced
by the out-of-the-box Marigold model.

model more smoothly delineates the building in the top left
corner, unlike the out-of-the-box model, which rendered it
with a staircased appearance.

Similarly, in more complex and dynamic scenes, the model
adeptly managed to delineate between objects at varying dis-
tances, showcasing its robustness in handling real-world vari-
ability. As illustrated in Fig. 12, our model demonstrates a
profound capacity for capturing intricate details at both near
and distant ranges, exemplified by the clarity of the electricity
pole in the left image and the leaves on the distantly posi-
tioned tree in the center of the right image. This qualitative
analysis underlines the model’s potential in practical applica-
tions, suggesting its utility in navigational assistance systems
and autonomous vehicle technologies.

4 Experiments

For our experiments, we connect our rotation detection mod-
ule, diffusion-based depth predictor, and the DPVO SLAM
algorithm connector for an augmented end-to-end SLAM sys-
tem forming RotoSLAM. To evaluate the effectiveness of our
method, we evaluate RotoSLAM on the KITTI [9] dataset,
which none of our trained components have seen during train-
ing. Despite having never seen any KITTI trajectories or im-
age data, our model is able to outperform DPVO and DPVO +
Marigold methods. Qualitatively, the amount of scale drift is
greatly reduced by RotoSLAM, and when utilizing Absolute
Trajectory Error (ATE), our method performs the best.



Fig. 11. Comparative visualization of depth map generation
for a scene from the DDAD dataset. Top: Original image
captured in an urban environment. Middle: Depth map gen-
erated by our model. Bottom: Depth map produced by the
out-of-the-box Marigold model.

Fig. 12. Comparative visualization of depth map generation
for a scene from the KITTI dataset. Top: Original image cap-
tured in an urban environment. Middle: Depth map generated
by our model. Bottom: Depth map produced by the out-of-
the-box Marigold model.
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00 trajectory.
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Marigold, and RotoSLAM, based on more data from KITTI
dataset’s 08 trajectory.



5 Conclusion / Future Directions

5.1 Infinigen

As the process of training our model requires perfect pixel-
wise ground truth data, we are limited by the scope of our
only source of such data, Infinigen. As of the date this paper
was written, Infinigen only offers full access for the genera-
tion of outdoor natural 3D images, which gives us adequate
variation for a functional model but doesn’t account for the
full set of potential SLAM use cases. Infinigen is currently
in the process of expanding to indoor and mixed-location
scene generation as well, so retraining the model with a wider
dataset that includes these scenes as well could increase the
scope of its accuracy.

5.2 Diffusion Model

Our current experiment developed 3 diffusion models (based
on averaging past frames, weights based on exponential decay,
and weight optimization) in addition to the baseline model.
Our models have shown improvement to the RMSE compared
to the baseline model. However, there are approaches we
have considered that could theoretically improve the RMSE
even further.

One such approach would be to use Flow Matching
in the diffusion model. Flow matching, which is often
used for generative modelling, establishes a probability
distribution p, : [0,1] x RY — R, for the vector vector
u; : [0,1] x R — R¥ [12]. Current research has shown that
u;(x|z) can be properly sampled via p;(x|z) by transporting
the probability path along the trajectory during training. This
has only been trained and tested on straight trajectories, but
flow matching has been shown to have significantly lower
RMSE than Marigold [12].

Theoretically, if given enough data to train (which would be
immensely huge to consider all possible trajectories), flow
matching has the capability to use sampling and conditioning
to learn the probability distributions of each ’object’/pixel
and be able to accurately create depth maps along the correct
trajectory.

Furthermore, according to "Towards Robust Monocular Depth
Estimation: Mixing Datasets for Zero-shot Cross-dataset
Transfer" [4], there are some limitations to using RMSE. Be-
cause RMSE considers the loss of all points, it is prone to
outliers. Since most large-scale datasets can only provide im-
perfect ground truths, the paper suggests that the loss function
should be modeled using the median. While we used RMSE
since it is a common practice, our accuracy could increase by
using a median-based loss function.

11

6 Author Contribution Statement

Erich focused on rotation detection, connecting depth
prediction module to the DPVO backend, and evaluation
scripts. Hang focused on the fine-tuning, training, and
testing of the depth prediction model, leveraging the
capabilities of the existing Marigold diffusion model for
monocular depth prediction. Sabrina sourced real world
datasets, trained multiple diffusion models, connected
the diffusion model to Erich’s backend, and analyzed
possible further directions for enhancing the diffusion
model. Arjun researched Infinigen, wrote software to
control synthetic camera trajectories, generated all synthetic
data, sourced real world data, and worked on the model
theory. All authors contributed equally to the writing and
revising of the paper, including citations and reference figures.
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