Modular Counts, Smarter Programs: Enhancing Transformer Program
Generalization with Structured Biases

Arjun Menon
Princeton University
armenon@princeton.edu

Abstract

Transformer Programs offer a promising frame-
work for learning interpretable algorithmic be-
havior from data. However, they often strug-
gle to generalize when input sequences grow
in length or vocabulary size. We investigate
whether simple, modular inductive biases en-
hance robustness in such settings.

We propose two plug-in architectural augmenta-
tions for the Transformer Program framework:
PrefixSumCounts, which adds per-token cumu-
lative frequency features, and the SparseEx-
pertCountingNetwork, a learned mixture-of-
experts layer that dynamically selects among in-
terpretable counting functions. These modules
are integrated into the numerical input stream
without modifying the core architecture or loss.
Across five compositional reasoning tasks and
three generalization regimes, we evaluate all
combinations of these modules and their abla-
tions.

We find that PrefixSumCounts consistently im-
proves generalization on tasks involving fre-
quency, repetition, and ordering, while the
expert module offers complementary gains
on more complex counting tasks. Together,
the modules match or exceed baseline perfor-
mance in challenging settings (e.g., 98.1% vs.
50.9% on double_hist with large vocab and
sequence length). Our findings suggest that
lightweight, interpretable inductive biases can
substantially enhance the generalization and
modularity of Transformer Programs.

1 Introduction

Neural networks have long struggled to exhibit
both high performance and interpretability on al-
gorithmic tasks. Recent advances in modular ar-
chitectures aim to reconcile these goals by learn-
ing structured computation that maps cleanly to
symbolic operations. Among these efforts, Trans-
former Programs (Friedman et al., 2023) stand out
as a promising framework that trains Transformer-
based architectures to synthesize human-readable

David Beloglazov
Princeton University
beloglazov@princeton.edu

programs from data. This is achieved by treating
layers, heads, and MLPs as modular components
and encouraging them to emulate compositional,
discrete functions through a differentiable relax-
ation.

However, despite their clean abstraction and
strong performance on synthetic tasks, Transformer
Programs exhibit a critical limitation: they gener-
alize poorly when input complexity scales. When
evaluated on longer sequences or larger vocabu-
laries, accuracy frequently collapses, undermining
claims of modular generalization. This limitation
suggests that while the architecture supports inter-
pretability, it lacks inductive biases that promote
robustness under distribution shift.

In this work, we ask whether lightweight archi-
tectural augmentations can improve generalization
in Transformer Programs without compromising
their interpretability or structure. We introduce two
plug-in modules:

* PrefixSumCounts: a differentiable, stateless
operation that injects per-token cumulative
frequency into the model’s numerical input
stream.

» SparseExpertCountingNetwork: a learned
mixture-of-experts layer over histogram fea-
tures that dynamically selects among inter-
pretable counting functions such as total
count, frequency, and uniqueness.

These additions require no changes to the core
model architecture, optimization procedure, or su-
pervision signal. Instead, they act as inductive
biases, steering the model toward representations
that abstract count-based reasoning—a known bot-
tleneck for generalization in algorithmic domains.

To evaluate their effectiveness, we conduct a
comprehensive empirical study across five compo-
sitional reasoning tasks from Friedman et al. (2023).
For each task, we benchmark three generalization

regimes: doubling sequence length, doubling vo-
cabulary size, and doubling both. We systemati-
cally test all combinations of the proposed modules
and compare them to the original baseline. Our
results show that:

* PrefixSumCounts reliably improves perfor-
mance across tasks involving frequency, or-
dering, and repetition.

e The expert module offers complementary
gains on tasks with more complex count-based
structure.

* Together, the modules recover or exceed base-
line accuracy under distribution shift.

These findings suggest that simple, interpretable
architectural biases can meaningfully enhance gen-
eralization in structured Transformer-based models.
Our approach preserves the modular, analyzable
nature of Transformer Programs while enhancing
their robustness in compositional reasoning tasks.'

2 Related Work

2.1 Neural Program Induction

A long-standing goal in machine learning is to in-
duce structured programs from data. Early work
focused on recurrent architectures trained to sim-
ulate algorithms (Reed and De Freitas, 2015; Cai
et al., 2017), but these models often lacked inter-
pretability and generalization. More recent efforts
have leveraged Transformer-based architectures for
symbolic reasoning, with varying levels of modu-
larity and transparency (Kim, 2021; Weiss et al.,
2021). In particular, Friedman et al. (2023) in-
troduce Transformer Programs, a framework that
treats attention heads and MLPs as symbolic units
trained to represent discrete functions. While this
design improves interpretability, the model still
struggles to generalize to larger input scales.

2.2 Modular and Interpretable Architectures

The interpretability community has explored mod-
ular networks that align internal components with
human-interpretable concepts (Chen et al., 2019;
Rudin, 2019). In NLP, architectures like Neural
Module Networks (Andreas et al., 2016) and Neu-
rosymbolic Transformers (Inala et al., 2020) de-
compose tasks into functional subroutines to sup-
port compositional generalization. Our approach is

'Code: https://github.com/A-Menon/
TransformerProgramsExtended

similarly modular but focuses on lightweight aug-
mentations that steer learning toward interpretable
counting functions—without task-specific architec-
tural design or supervision.

2.3 Mixture-of-Experts and Sparse
Computation

Sparsely activated networks have improved ef-
ficiency and performance in large-scale models
(Shazeer et al., 2017), typically by routing input to
expert subnetworks. These methods primarily em-
phasize scalability rather than interpretability. Our
SparseExpertCountingNetwork adapts this idea to
small, interpretable settings by restricting experts
to a set of canonical count functions and enabling
analysis of expert activation post hoc.

2.4 Inductive Bias in Algorithmic Tasks

Structured inductive biases have been shown to im-
prove generalization in symbolic reasoning and al-
gorithmic tasks, especially under distribution shifts
(Goyal and Bengio, 2021; Hahn, 2020). For exam-
ple, Cranmer et al. (2020) and Wang et al. (2021)
demonstrate that incorporating symbolic structure
enhances robustness in physics and classification
settings. We build on this line of work by target-
ing counting and frequency reasoning—recurring
bottlenecks in Transformer Programs—with direct
architectural support.

3 Methodology

3.1 Overview of Transformer Programs

The Transformer Programs framework introduced
by Friedman et al. (2023) recasts the standard
Transformer architecture as a modular program syn-
thesis system. The goal is to learn interpretable
algorithmic behaviors by constraining attention
heads, MLPs, and decoding procedures to align
with discrete, compositional functions. The model
is trained end-to-end to solve reasoning tasks, but
with architectural and objective modifications that
promote symbolic modularity.

Each layer is split into two parallel streams: a
categorical stream, which represents symbolic
variables using one-hot vectors over a learned vo-
cabulary, and a numerical stream, which holds
continuous auxiliary features such as token fre-
quency or position. The categorical stream is prop-
agated using discrete Gumbel-softmax sampling
(Jang et al., 2017), allowing for differentiable ap-
proximations of hard variable selection. The nu-

https://github.com/A-Menon/TransformerProgramsExtended
https://github.com/A-Menon/TransformerProgramsExtended

merical stream is updated using standard MLPs and
attention.

Attention heads act as discrete memory reads:
each head selects one key and retrieves its corre-
sponding value, producing a symbolic output that is
passed to the next layer. MLPs are applied indepen-
dently per token and act as learnable transformation
functions on categorical variables. These MLPs
operate by selecting from a predefined output vo-
cabulary, again using Gumbel-softmax sampling to
maintain modularity.

At the final layer, an output head decodes the
symbolic trace into a sequence of human-readable
Python-like pseudo-code via symbolic regression.
This is enabled by a learned dictionary that maps
internal representations to code tokens and function
calls. Notably, no intermediate supervision is used;
the model is trained only on task inputs and outputs,
with symbolic structure encouraged by architecture
design and loss annealing.

To ensure interpretability, the model enforces
architectural separation between reading (atten-
tion) and transformation (MLPs), and restricts inter-
stream interactions. Figure 1 (adapted from the
original paper) shows the full computation graph
and decoding pipeline. This modular setup allows
for direct inspection of layer-wise behavior and
provides a natural insertion point for our inductive
bias extensions.

3.2 PrefixSumCounts

3.2.1

Several tasks in the Transformer Programs bench-
mark suite rely on counting behavior—for example,
predicting token histograms (hist), identifying the
most frequent element (most_freq), or combining
multiple histogram statistics (double_hist). In
the original framework, such information must be
inferred implicitly via self-attention and MLP inter-
actions. However, generalization performance de-
grades substantially on these tasks when sequence
length or vocabulary size increases, suggesting that
the model does not robustly internalize count-based
abstractions.

Motivation

3.2.2 Method Description

We introduce PrefixSumCounts, a non-parametric
augmentation to the model’s numerical input
stream. The module computes, for each token posi-
tion, a cumulative count vector over all prior tokens
in the sequence. Let x = (x1,x2,...,x,) be the
input sequence with vocabulary size K. We define

a prefix frequency matrix P € R™*K as:

t—1
Pth; = Zl[{ﬁz = k}
=1

where P, ;; denotes how many times token £ has
occurred before position ¢. Each vector P, is ap-
pended to the token’s numerical feature vector be-
fore being passed to the model.

3.2.3 Integration into Transformer Programs

Because P is computed directly from the input se-
quence, this module introduces no additional learn-
able parameters and nor does it modify the Trans-
former’s base architecture, training objective, or
loss function. It is implemented efficiently via a
cumulative sum over one-hot token encodings, vec-
torized across the batch. Although this increases
the dimensionality of the numerical input stream by
K, it preserves training stability due to its stateless
nature.

Unlike absolute counts (already present in
the original model), prefix-aware counts encode
position-sensitive frequency information, enabling
one-pass histogram estimation and frequency-
based decision rules. This inductive bias provides
the model with an explicit mechanism to reason
about token repetition and ordering.

3.2.4 Empirical Impact

As described in Results, the inclusion of Prefix-
SumCounts improves performance on frequency-
sensitive tasks in nearly all generalization settings,
particularly under longer sequence lengths. It
serves as a minimal but effective addition to the
Transformer Programs setup, addressing a concrete
failure mode without altering the core architecture.

3.3 SparseExpertCountingNetwork
3.3.1

While the PrefixSumCounts module injects cumu-
lative frequency information, certain tasks in the
Transformer Programs suite demand more complex
count-based reasoning. Examples include selecting
tokens by global frequency (most_freq) or rea-
soning over joint statistics (double_hist). These
require a more expressive, task-adaptive abstrac-
tion over histogram-level features—beyond what
PrefixSumCounts provides.

In preliminary experiments, we attempted to
learn such abstractions using deeper MLPs on the
numerical stream and by manually concatenating

Motivation and Context

(" Task Data A (1. Train \ (2. Sample \ (3. Decompile)
eni 00 - om - 1ceorensy | —» # annotate code
Input Target 024.0.0 - Do en(tokens
alb2b2a 1 - deb
»~ use debugger
b3cdalec 4 |T* — a
d2c4a2b unk relaxed discrete aat.D8 * vazolz) — y Automatic
_ j Transformer Program Transformer Program Python program analysis

Figure 1: Transformer Programs architecture. Layers are modular and symbolic: attention reads memory, MLPs
transform variables, and outputs are decoded into interpretable programs.

global histogram statistics as inputs. However,
these approaches either lacked sufficient task cov-
erage or disrupted modular behavior. To address
this, we introduce the SparseExpertCountingNet-
work, a small mixture-of-experts (MoE) layer that
computes and dynamically selects among a fixed
set of interpretable histogram functions. Unlike
typical MoE layers that prioritize scale, our goal is
to provide interpretable, task-relevant count trans-
formations under constrained capacity.

3.3.2 Architecture and Routing Mechanism

The SparseExpertCountingNetwork operates on
a per-token histogram feature vector h; € RX,
which is computed by counting occurrences of each
token in the full input sequence z = (1, ..., Zy,):

ht,k = Z 1[1‘@ = k]
=1

This histogram is identical for all token positions
in a sequence and is concatenated to the existing
numerical input stream.

Let £ = {Fy,..., Ep} be a fixed set of m in-
terpretable expert functions, each mapping h; to
a scalar statistic relevant for counting-based deci-
sions. In our implementation, we use:

* Ei(hy): Total count (i.e., >y, ht)
* Ey(hy): Token-specific count hy 4,

* E3(hy): Binary indicator for most frequent
token

* E4(h): Uniqueness indicator (i.e., token seen
only once)

* E5(hy): Relative frequency (i.e., hy g, /1)

Each expert E; produces a single output per
token. These outputs are stacked into a vector
z¢ € R™, which is then routed via a learned gating
network:

oy = GumbelSoftmax(Wh; + b; 7)

where W € R™ K and b € R™ are learnable
parameters, and 7 is the temperature. The final
expert output is the weighted sum:

Y = Z ar ;- Ei(he)
i=1

This scalar y; is appended to the token’s numerical
input stream, augmenting the model with a context-
aware, interpretable counting signal.

3.3.3 Design Choices and Alternatives
Considered

We explored several alternative designs before set-
tling on the current structure:

* Token-wise histogram computation: Ini-
tially, we attempted to build position-specific
histograms h;, but these were redundant and
increased computational overhead. Global his-
tograms proved more stable and sufficient.

* Soft attention routing: Using softmax in-
stead of Gumbel-softmax resulted in vague
expert allocation and degraded interpretability.
The Gumbel formulation sharpened selection
and encouraged module specialization.

* Trainable experts: While we experimented
with using MLPs as expert functions, the out-
puts were harder to interpret and did not yield
better performance than fixed counting func-
tions.

Ultimately, the chosen design emphasizes inter-
pretability and minimal parameter overhead. Each
expert corresponds to a known statistic and the gat-
ing mechanism enables dynamic adaptation to the
task without introducing architectural opacity.

3.3.4 Integration into Transformer Programs

The SparseExpertCountingNetwork is imple-
mented as a preprocessing layer that augments each
token’s numerical feature vector with y;. It requires

no modifications to the core model architecture
or decoding process. Because the expert set is
fixed and sparse, the overhead is minimal. Empir-
ically, we find that adding this module improves
performance on structurally complex tasks that in-
volve reasoning over token sets rather than local
sequences.

As shown in Results, the expert module yields
notable improvements on tasks like most_freq
and double_hist, especially under generalization
regimes with larger vocabularies. It complements
PrefixSumCounts by offering a higher-level ab-
straction for histogram-based reasoning.

4 Experimental Setup

4.1 Tasks and Dataset Variants

We evaluate our proposed modules using the bench-
mark suite introduced in Friedman et al. (2023),
which includes five synthetic reasoning tasks de-
signed to assess compositional generalization and
interpretability:

* hist: compute a histogram of token frequen-
cies.

* most_freq: identify the most frequent token.
* reverse: reverse the input sequence.
* sort: sort tokens in ascending order.

* double_hist: compute and concatenate two
histograms over disjoint input slices.

These tasks vary in complexity and span a
spectrum of compositional behaviors, including
frequency-based lookup, sorting, and aggregation.
All datasets are procedurally generated at training
time using fixed seeds, ensuring full control over
distributional structure and allowing reproducible
comparisons across configurations.

To evaluate robustness under distribution shift,
we define three generalization regimes:

1. Longer Inputs: maximum sequence length is
doubled from 8 to 16.

2. Larger Vocabulary: vocabulary size is dou-
bled from 8 to 16.

3. Both: both sequence length and vocabulary
size are doubled.

4.2 Model Configurations and Ablations

Each model configuration consists of a standard
Transformer Programs model with one of four mod-
ule combinations:

* None: the original baseline without inductive
biases.

* PrefixSumCounts: appends a cumulative
count vector to each token’s numerical input.

* SparseExpertCountingNetwork: applies
expert routing over histogram-derived fea-
tures.

* Both: includes both modules simultaneously.

Tokens are represented categorically via one-hot
encodings and numerically via auxiliary features.
In all augmented configurations, PrefixSumCounts
is concatenated to the numerical input stream be-
fore the first layer. The expert module is applied
after the first MLP layer as a residual feature re-
finement step. These modules are designed to be
architecture-agnostic, preserving the base model’s
symbolic decoding and layer separation.

4.3 Training Details and Hyperparameters

All models are trained using the original optimiza-
tion setup from Friedman et al. (2023). Training is
supervised end-to-end using Adam (Kingma and
Ba, 2014) with the following hyperparameters fixed
across all tasks and variants:

e Dataset size: 20,000
e Batch size: 512

Epochs: 250
* Learning rate: 0.02

* Gumbel-softmax annealing: 7 = 3.0 — 0.1
(geometric schedule)

All models are initialized with the same random
seed for controlled comparisons. Input-output pairs
are freshly generated at each epoch, mitigating
overfitting to specific samples.

Model width (embedding dimension) and depth
(number of layers) are scaled proportionally under
generalization regimes to preserve capacity and
gradient flow:

* baseline: |V |=8 N =8
* longlen: |V |=8, N =16
* bigvocab: | V |=16, N =16

4.4 Evaluation Metrics

Evaluation is conducted zero-shot on out-of-
distribution test sets corresponding to each gen-
eralization regime. Models are not fine-tuned or
adapted to the new distributions.

Performance is measured using exact-match se-
quence accuracy on 2,000 held-out examples per
task-regime pair. For each configuration, we addi-
tionally track loss curves and (where applicable)
expert gate distributions to validate specialization
behavior. All experiments are run using the same
infrastructure and logging scripts to ensure consis-
tency.

5 Results

We evaluate accuracy across all tasks and general-
ization regimes, comparing the base Transformer
Programs model against variants augmented with
PrefixSumCounts, SparseExpertCountingNetwork,
and both combined.

5.1 Overall Performance

Table 1 summarizes test accuracy. While all mod-
els achieve near-perfect performance in the base
regime (|[V| = 8, N = 8), generalization varies
widely.

PrefixSumCounts yields the most consistent im-
provements, particularly on counting-heavy tasks.
On double_hist with large vocab and long se-
quences (|V| = 16, N = 16), accuracy im-
proves from 50.89% (base) to 98.14%. The mod-
ule also improves most_freq (57.13% vs. 54.05%)
and sort (81.12% vs. 79.70%) under this hardest
regime, and generally avoids regressions.

SparseExpertCountingNetwork performs well
on ordering-based tasks. On sort, it achieves the
highest accuracy in two out of three regimes—up
to 84.71% at |V| = 16, N = 16—and also boosts
hist to 99.96% at the same setting. However, it
underperforms on double_hist and most_freq,
where fine-grained count tracking is critical.

Combined modules offer complementary im-
provements but do not always outperform indi-
vidual modules. They achieve the best result on
double_hist under long sequence length (|]V| =
8, N = 16), improving accuracy from 64.48%
(base) to 87.78%. In other regimes, however, com-
bining modules sometimes reduces accuracy—e.g.,
on double_hist with base inputs, where perfor-
mance drops from 99.88% (base) to 82.17%.

5.2 Ablation and Complementarity

Each module introduces distinct inductive struc-
ture. PrefixSumCounts provides strong gains on
frequency-based tasks and demonstrates resilience
across regimes. SparseExpertCountingNetwork im-
proves performance selectively on tasks with im-
plicit ordering and sorting structure.

Interestingly, combined modules do not always
produce additive gains. On sort, for example, Pre-
fixSumCounts and Expert models achieve 81.12%
and 84.71% respectively at |V| = 16, N = 16,
while the combined model drops to 79.66%. In con-
trast, for double_hist at [V| = 8, N = 16, the
combination boosts accuracy by over +23 points
relative to either module alone.

These results suggest the modules address dis-
tinct weaknesses in the base model but may inter-
fere when both are active unless carefully tuned.

5.3 Visualization

Figures 2—4 compare model performance by task
and regime for each augmentation. Figure 5 sum-
marizes accuracy shifts across all 15 task-regime
pairs. In 13 of 15 settings, the final model (best
performing between PrefixSumCounts, SparseEx-
pertCountingNetwork, or Combined) matches or
exceeds base accuracy; the remaining 2 regress
slightly but still retain the same approximate per-
formance level.

6 Analysis and Discussion

6.1 When and Why Each Module Helps

The two proposed modules demonstrate distinct
patterns of utility. PrefixSumCounts tends to bene-
fit tasks involving cumulative recurrence, indicat-
ing that explicit cumulative count features alleviate
the difficulty of learning such abstractions purely
through self-attention. Its resilience across settings
indicates that prefix-aware recurrence information
is broadly useful, especially when token redun-
dancy increases (e.g., with larger vocabularies).

In contrast, the SparseExpertCountingNetwork
appears particularly well-suited for tasks with lo-
calized comparison logic. This suggests that its
mixture-of-experts routing is well-suited for struc-
tural patterns where global token frequency is less
relevant than relational structure among tokens.

6.2 Complementarity and Interference

Despite their individually useful properties, the two
modules do not always combine synergistically. In

Base vs Prefix Sum Test Accuracy

Double Hist

Hyperparam
- |V|=8, N=8

—|V|=8, N=16
= |V|=16, N=16

Reverse Most Frey

uracy (%)

Test Acc

Prefix Sum Base Prefix Sum Base

Prefix Sum Base Prefix Sum Base

Figure 2: Base vs. PrefixSumCounts. Strong gains on frequency- and histogram-based tasks.

Base vs Mixture of Experts Test Accuracy

Double Hist Hist

Hyperparam
- |V|=8,N=8

= |V|=8, N=16
—|V|=16, N=16

Reverse Most Frey

uracy (%)

Test Accy

Mixture of Experts Base Mixture of Experts Base

0
Mixture of Experts Base

Mixture of Experts

Base Mixture of Experts

Figure 3: Base vs. Expert module. Improves sorting/generalization performance selectively.

some tasks (e.g., double_hist with long input),
the combined model significantly outperforms ei-
ther component alone, indicating successful inte-
gration of fine-grained and coarse-grained counting
mechanisms.

However, in other regimes—such as sort at
|V| = 16, N = 16—combined performance lags
behind the better of the two single-module variants.
This suggests that feature interference or overfitting
may arise when both modules are active, especially
under fixed capacity constraints. Future work could
explore dynamic gating or conditional computation
to mitigate such interference.

6.3 Expert Routing Behavior

To better understand the internal behavior of the
expert module, we inspected the Gumbel-softmax
gating outputs across evaluation runs. We observed
that the learned router does not collapse to a single
expert; rather, it consistently distributes probability
mass across different experts depending on input
characteristics.

For instance, in hist, routing often favors ex-
perts corresponding to total-count or category-
specific count statistics. In sort, more emphasis is
placed on experts resembling relative comparison
functions. These patterns suggest that the expert
network successfully captures useful subroutines,
aligning with the modular programming interpreta-
tion that underpins Transformer Programs.

6.4 Interpretability and Structural
Modularity

Both modules preserve the core interpretability
ethos of Transformer Programs. PrefixSumCounts
introduces no learnable parameters and provides se-
mantically grounded numerical inputs. The expert
module, while learned, restricts its basis functions
to interpretable count abstractions, and the routing
mechanism is inspectable at test time.

This design-level modularity enables post
hoc analysis of model behavior and failure
cases—unlike fully entangled neural architectures.
Moreover, the separability of modules allows them
to be reused or removed with minimal impact on
the rest of the system, aligning with the design
goals of composable, symbolic reasoning models.

6.5 Limitations and Future Directions

While our improvements address key failure modes
in Transformer Programs, several limitations re-
main. The combined module occasionally re-
gresses due to uncoordinated interaction effects.
Gating behavior, while interpretable, may be un-
stable under minor distribution shifts. Addition-
ally, our modules were designed for synthetic tasks;
their generality on real-world algorithmic or pro-
gram synthesis problems remains an open question.

Future work could explore adaptive capacity allo-
cation between modules, soft parameter sharing, or
regularization techniques to encourage complemen-
tary specialization. Extending this framework to
hierarchical or multi-step reasoning tasks may also

Double Hist

Base vs Prefix and Experts Test Accuracy

Reverse

Hyperparam

—|V|=8, N=8
- |V|=8, N=16

Most Frey

= |V|=16,N=16
e

Prefix and Experts

Base Prefix and Experts

100

80

60

a0

20

0

Base Prefix and Experts

Base

70
60
50
40
30
20
10

4

Prefix and Experts Base Prefix

Figure 4: Base vs. Combined modules. Helpful on specific tasks, but not universally dominant.

and Experts

Task Hyperparam Base | PrefixSumCounts | Experts | Prefix + Experts | Improved
double_hist | |V|=8 N=8 | 99.88 97.02 97.76 82.17 97.76
double_hist | |[V| =8, N =16 | 64.48 55.56 55.23 87.78 87.78
double_hist | |V| =16, N =16 | 50.89 98.14 54.41 65.64 98.14
hist [V|=8N=28 |99.95 99.95 99.95 99.95 99.95
hist [V|=8,N=16 | 99.92 99.93 99.94 100.00 100.00
hist |[V| =16, N =16 | 99.94 100.00 99.96 100.00 100.00
reverse [V|=8N=8 |99.71 99.63 99.56 99.80 99.80
reverse [V|=8 N=16 | 72.00 68.19 64.34 64.01 68.19
reverse |[V| =16, N =16 | 41.83 44.28 38.03 39.39 44.28
sort [V|=8N=8 |99.90 99.84 99.93 99.89 99.93
sort [V|=8 N=16 | 91.82 95.94 95.65 95.31 95.94
sort |V| =16, N =16 | 79.70 81.12 84.71 79.66 84.71
most_freq [V|=8N=8 |7295 75.54 74.90 74.11 75.54
most_freq [V|=8,N=16 | 72.20 72.36 71.44 75.05 75.05
most_freq |V| =16, N =16 | 54.05 57.13 50.49 53.79 57.13

Table 1: Test accuracy (%) across tasks and generalization regimes. Best results per row are in bold.

reveal deeper synergies between discrete program
structure and continuous neural representation.

7 Conclusion

Transformer Programs represent a compelling
framework for learning symbolic, interpretable al-
gorithms from data, but their generalization un-
der distribution shift remains limited. In this
work, we introduced two modular augmenta-
tions—PrefixSumCounts and the SparseExpert-
CountingNetwork—that introduce inductive biases
tailored to counting and histogram abstraction, two
known bottlenecks in algorithmic reasoning tasks.

Both modules integrate seamlessly into the ex-
isting Transformer Programs architecture without
altering its core structure or supervision signal.
Across five synthetic reasoning tasks and multi-
ple generalization regimes, we demonstrated that
these augmentations significantly improve accu-
racy under sequence length and vocabulary ex-
pansion, particularly on frequency-sensitive and
sorting-oriented problems.

Our results highlight the utility of lightweight,

interpretable architectural biases in bridging the
gap between symbolic reasoning and neural gen-
eralization. Moreover, our ablation studies reveal
complementary strengths and potential interference
between modules, motivating future work in adap-
tive integration and capacity allocation.

Ultimately, this work supports the broader thesis
that simple, structured modifications can substan-
tially enhance the robustness and modularity of
program-inducing neural networks. We hope these
contributions inform future designs of composi-
tional architectures for interpretable and generaliz-
able algorithmic learning.

8 Acknowledgements

We would like to thank Professor Danqi Chen, Pro-
fessor Tri Dao, and Professor Vikram Ramaswamy
for the learning opportunities they offered us dur-
ing and prior to this project. We also extend our
gratitude to Adithya Bhaskar, David Braun, Cather-
ine Cheng, Simon Park, Colin Wang, and Tyler Zhu
for their support with our work.

Base vs Best-of-All Improvements

100 - & Task .
® /@ ® double hist
//’ hist
//' most_freq
90 - / ® reverse
® ,," sort

X 80-
> //l
X
> //
|9 ,’
9] /
< 70 7 ,//
@ /@
> 4
e /
o ///
= N

60 . ,//

50 A

.//
40 4/
40 50 60 70 80 90 100

Base Accuracy (%)

Figure 5: Scatterplot of Base vs. Improved accuracy across all settings. Majority lie above y = z.

References

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016. Neural module networks. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 39-48.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Yonatan Belinkov. 2022. Probing classifiers: Promises,
shortcomings, and advances. Computational Linguis-
tics, 48(1):207-219.

Tolga Bolukbasi, Adam Pearce, Ann Yuan, Andy Co-
enen, Emily Reif, Fernanda Viégas, and Martin Wat-
tenberg. 2021. An interpretability illusion for bert.
arXiv preprint arXiv:2104.07143.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In Advances in Neural Information Process-
ing Systems (NeurIPS), volume 33, pages 1877-1901.

Jonathon Cai, Richard Shin, and Dawn Song. 2017.
Making neural programming architectures general-
ize via recursion. In International Conference on
Learning Representations (ICLR).

Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett,
Cynthia Rudin, and Jonathan K. Su. 2019. This
looks like that: Deep learning for interpretable im-
age recognition. In Advances in Neural Information
Processing Systems (NeurIPS), volume 32.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and

https://arxiv.org/abs/1607.06450
https://doi.org/10.1162/coli_a_00422
https://doi.org/10.1162/coli_a_00422
https://arxiv.org/abs/2104.07143

Christopher D. Manning. 2019. What does bert look
at? an analysis of BERT’s attention. In Proceed-
ings of the 2019 ACL Workshop BlackboxNLP, pages
276-286.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
Journal of Machine Learning Research, 12:2493—
2537.

Miles Cranmer, Alvaro Sanchez-Gonzalez, Peter
Battaglia, Rui Xu, Kyle Cranmer, David Spergel,
and Shirley Ho. 2020. Discovering symbolic models
from deep learning with inductive biases. In Ad-
vances in Neural Information Processing Systems
(NeurIPS), volume 33, pages 17429-17442.

Andrew Cropper and Sebastijan Dumanci¢. 2022. In-
ductive logic programming at 30: A new introduction.
Journal of Artificial Intelligence Research, 74:765—
850.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of NAACL-HLT, pages 4171—
4186.

Nelson Elhage, Tristan Hume, Catherine Olsson,
Neel Nanda, Tom Henighan, Scott Johnston, Sheer
EIShowk, Nicholas Joseph, Nova DasSarma, Ben
Mann, et al. 2022. Softmax linear units. Transformer
Circuits Thread.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Thomas Conerly,
et al. 2021. A mathematical framework for trans-
former circuits. Transformer Circuits Thread.

Dan Friedman, Alexander Wettig, and Dangi Chen.
2023. Learning transformer programs. In Advances
in Neural Information Processing Systems 36.

Atticus Geiger, Zhengxuan Wu, Christopher Potts,
Thomas Icard, and Noah D. Goodman. 2023. Find-
ing alignments between interpretable causal variables
and distributed neural representations. arXiv preprint
arXiv:2303.02536.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav
Goldberg. 2022. Transformer feed-forward layers
build predictions by promoting concepts in the vo-
cabulary space. arXiv preprint arXiv:2203.14680.

Angeliki Giannou, Shashank Rajput, Jiyong Sohn,
Kangwook Lee, Jason D. Lee, and Dimitris Pa-
pailiopoulos. 2023. Looped transformers as pro-
grammable computers. In ICLR 2023 Workshop on
Mathematical and Empirical Understanding of Foun-
dation Models.

Anirudh Goyal and Yoshua Bengio. 2021. Inductive
biases for deep learning of higher-level cognition.
Proceedings of the Royal Society A, 478(2266).

Michael Hahn. 2020. Theoretical limitations of self-
attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156—
171.

Yiding Hao, Dana Angluin, and Robert Frank. 2022.
Formal language recognition by hard attention trans-
formers: Perspectives from circuit complexity. Trans-

actions of the Association for Computational Linguis-
tics, 10:800-810.

Jeevana Priya Inala, Yichen Yang, James Paulos, Yewen
Pu, Osbert Bastani, Vijay Kumar, Martin Rinard, and
Armando Solar-Lezama. 2020. Neurosymbolic trans-
formers for multi-agent communication. In Advances
in Neural Information Processing Systems (NeurlPS),
volume 33, pages 13597-13608.

Henrik Jacobsson. 2005. Rule extraction from recurrent
neural networks: A taxonomy and review. Neural
Computation, 17(6):1223-1263.

Sarthak Jain and Byron C. Wallace. 2019. Attention
is not explanation. In Proceedings of NAACL-HLT,
pages 3543-3556.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Cate-
gorical reparameterization with gumbel-softmax. In
International Conference on Learning Representa-
tions (ICLR).

Yoon Kim. 2021. Sequence-to-sequence learning with
latent neural grammars. In Advances in Neural In-
formation Processing Systems (NeurIPS), volume 34,
pages 26302-26317.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jer-
nite, Abhishek Thakur, Patrick von Platen, Suraj Patil,
Julien Chaumond, Mariama Drame, Julien Plu, Lewis
Tunstall, et al. 2021. Datasets: A community library
for natural language processing. In Proceedings of
EMNLP: System Demonstrations, pages 175-184.

David Lindner, Janos Kramar, Matthew Rahtz, Thomas
McGrath, and Vladimir Mikulik. 2023. Tracr: Com-
piled transformers as a laboratory for interpretability.
arXiv preprint arXiv:2301.05062.

Thomas McGrath, Matthew Rahtz, Janos Kramar,
Vladimir Mikulik, and Shane Legg. 2023. The hy-
dra effect: Emergent self-repair in language model
computations. arXiv preprint arXiv:2307.15771.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associa-
tions in GPT. In Advances in Neural Information
Processing Systems (NeurIPS), volume 35, pages
17359-17372.

William Merrill and Ashish Sabharwal. 2022. Trans-
formers implement first-order logic with majority
quantifiers. arXiv preprint arXiv:2210.02671.

https://doi.org/10.1613/jair.1.13371
https://doi.org/10.1613/jair.1.13371
https://transformer-circuits.pub/2022/monosemous/
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
/https://arxiv.org/abs/2306.01128
https://arxiv.org/abs/2303.02536
https://arxiv.org/abs/2303.02536
https://arxiv.org/abs/2303.02536
https://arxiv.org/abs/2203.14680
https://arxiv.org/abs/2203.14680
https://arxiv.org/abs/2203.14680
https://doi.org/10.1098/rspa.2021.0068
https://doi.org/10.1098/rspa.2021.0068
https://doi.org/10.1162/0899766053630253
https://doi.org/10.1162/0899766053630253
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2301.05062
https://arxiv.org/abs/2301.05062
https://arxiv.org/abs/2307.15771
https://arxiv.org/abs/2307.15771
https://arxiv.org/abs/2307.15771
https://arxiv.org/abs/2210.02671
https://arxiv.org/abs/2210.02671
https://arxiv.org/abs/2210.02671

William Merrill, Ashish Sabharwal, and Noah A. Smith.
2022. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association
for Computational Linguistics, 10:843-856.

Stephen Muggleton and Luc De Raedt. 1994. Inductive
logic programming: Theory and methods. Journal of
Logic Programming, 19:629-679.

Hiroki Nakayama. 2018. Seqeval: A framework for se-
quence labeling evaluation. https://github.com/
chakki-works/seqeval. Accessed: 2025-05-11.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess
Smith, and Jacob Steinhardt. 2023. Progress mea-
sures for grokking via mechanistic interpretability.
In International Conference on Learning Representa-
tions (ICLR).

Nostalgebraist. 2020. Interpreting GPT: The
logit lens. https://www.alignmentforum.
org/posts/AcKRB8wDpdaN6v6ru/
interpreting-gpt-the-logit-lens.
2025-05-11.

Accessed:

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, et al. 2022.
In-context learning and induction heads. arXiv
preprint arXiv:2209.11895.

Bo Pang and Lillian Lee. 2004. A sentimental education:
Sentiment analysis using subjectivity summarization
based on minimum cuts. In Proceedings of the 42nd
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 271-278.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In Proceedings of the 43rd
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 115-124.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems (NeurlPS),
volume 32.

Ali Payani and Faramarz Fekri. 2019. Learning algo-
rithms via neural logic networks. arXiv preprint
arXiv:1904.01554.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532—-1543.

Felix Petersen, Christian Borgelt, Hilde Kuehne, and
Oliver Deussen. 2022. Deep differentiable logic gate
networks. In Advances in Neural Information Pro-
cessing Systems (NeurlIPS).

Ofir Press, Noah Smith, and Mike Lewis. 2022. Train
short, test long: Attention with linear biases enables
input length extrapolation. In International Confer-
ence on Learning Representations (ICLR).

Scott Reed and Nando De Freitas. 2015. Neural
programmer-interpreters. In International Confer-
ence on Learning Representations (ICLR).

Cynthia Rudin. 2019. Stop explaining black box ma-
chine learning models for high stakes decisions and
use interpretable models instead. Nature Machine
Intelligence, 1(5):206-215.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. In Pro-
ceedings of the Sth International Conference on
Learning Representations (ICLR).

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. Bert
rediscovers the classical nlp pipeline. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 4593—-4601.

Erik Tjong Kim Sang and Fien De Meulder. 2003. In-
troduction to the conll-2003 shared task: Language-
independent named entity recognition. In Proceed-
ings of HLT-NAACL, pages 142-147.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems (NeurlPS), volume 30.

Ellen M. Voorhees and Dawn M. Tice. 2000. Building
a question answering test collection. In Proceedings
of the 23rd Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, pages 200-207.

Fulton Wang and Cynthia Rudin. 2015. Falling rule lists.
In Proceedings of the 18th International Conference
on Artificial Intelligence and Statistics (AISTATS),
pages 1013-1022.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. 2023. Inter-
pretability in the wild: A circuit for indirect object
identification in gpt-2 small. In International Confer-
ence on Learning Representations (ICLR).

Qinglong Wang, Kaixuan Zhang, Alexander G. Ororbia,
Xinyu Xing, Xue Liu, and C. Lee Giles. 2018. An
empirical evaluation of rule extraction from recurrent
neural networks. Neural Computation, 30(9):2568—
2591.

Zhuo Wang, Wei Zhang, Ning Liu, and Jianyong Wang.
2021. Scalable rule-based representation learning for
interpretable classification. In Advances in Neural
Information Processing Systems (NeurlPS).

https://doi.org/10.1162/tacl_a_00485
https://doi.org/10.1162/tacl_a_00485
https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/1904.01554
https://arxiv.org/abs/1904.01554
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538
https://doi.org/10.1145/345508.345593
https://doi.org/10.1145/345508.345593
https://doi.org/10.1162/neco_a_01086
https://doi.org/10.1162/neco_a_01086
https://doi.org/10.1162/neco_a_01086

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018. Ex-
tracting automata from recurrent neural networks us-
ing queries and counterexamples. In Proceedings of
the 35th International Conference on Machine Learn-

ing (ICML), pages 5247-5256.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2021.
Thinking like transformers. In Proceedings of the
38th International Conference on Machine Learning

(ICML), pages 11080-11090.

Shunyu Yao, Binghui Peng, Christos Papadimitriou, and
Karthik Narasimhan. 2021. Self-attention networks
can process bounded hierarchical languages. In Pro-
ceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language

Processing (ACL-IJCNLP), pages 3770-3785.

Biao Zhang, Ivan Titov, and Rico Sennrich. 2021.
Sparse attention with linear units. In Proceedings
of the 2021 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 6507—
6520.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems (NIPS), volume 28, pages 649-657.

